Closing Today: $\quad 15.4$
Closing Thu: 15.5

Midterm 2 is Tuesday, March 1
Quick list of topics:
13.3/4: Curvature, Arc Length, TNB-Frame, Normal Plane, Osculating Plane Position, Velocity, Acceleration Tangent and Normal Comp. of Accel.
14.1/3/4/7: Level Curves, Domain, Partials, Tangent Plane (Linear approx/Differential) Local max/min (2 $2^{\text {nd }}$ deriv. test) Global max/min
15.1-15.4: Definition of double integral, volume, area and average value apps, general regions (top/bot, left/right), reversing order, polar

Entry Task: Give the bounds for the region in polar coordinates and set up the two double integrals:

1. 'a' is a constant,

$$
\iint_{D} 1 d A=?
$$

$$
\iint_{D} \sqrt{a^{2}-x^{2}-y^{2}} d A=?
$$

15.5 Center of Mass

We have seen:
$\iint_{R} f(x, y) d A=$ Volume under $\mathrm{f}(\mathrm{x}, \mathrm{y})$ over R
$\iint_{R} 1 d A=$ Area of R
$\frac{1}{\text { Area }} \iint_{R} f(x, y) d A=$ Average of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ over R
Today we will see one more application, which is a generalization of an application from Math 125.

Goal: Given a thin uniformly distributed plate (a lamina) with density at each point $\mathrm{p}(\mathrm{x}, \mathrm{y})$ can we find the center of mass (centroid).

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=\mathrm{mass} / \mathrm{area}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)
$$

In general: If you are given \boldsymbol{n} points
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with corresponding masses $m_{1}, m_{2}, \ldots, m_{n}$
then

$$
\begin{aligned}
& \bar{x}=\frac{m_{1} x_{1}+\cdots+m_{n} x_{n}}{m_{1}+\cdots+m_{n}}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{M_{y}}{M} \\
& \bar{y}=\frac{m_{1} y_{1}+\cdots+m_{n} y_{n}}{m_{1}+\cdots+m_{n}}=\frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{M_{x}}{M}
\end{aligned}
$$

Now consider a thin plate with density at each point given by $p(x, y)$. Here is the derivation of the center of mass formulas:

1. Break region into m rows and n columns.
2. Find the center of mass of each rectangle.

$$
\left(\bar{x}_{i j}, \bar{y}_{i j}\right)
$$

3. Estimate the mass of each rectangle.

$$
m_{i}=p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A
$$

4. Now use the formula for n points.
5. Take the limit.

Center of Mass:

$$
\begin{gathered}
\bar{x}=\frac{\text { Moment about } \mathrm{y}}{\text { Total Mass }}=\frac{\iint_{R} x p(x, y) d A}{\iint_{R} p(x, y) d A} \\
\bar{y}=\frac{\text { Moment about } \mathrm{x}}{\text { Total Mass }}=\frac{\iint_{R} y p(x, y) d A}{\iint_{R} p(x, y) d A}
\end{gathered}
$$

Example:

Consider a 1 m by 1 m square metal plate.
The density is given by $p(x, y)=k x \mathrm{~kg} / \mathrm{m}^{2}$ for some constant k.

Side note: This means that the density is proportional to the distance from the
y-axis (in other words it gets heavier, at a constant rate, from left-to-right).
Find the center of mass.

Note:

Proportional to the distance from the y-axis

$$
p(x, y)=k x .
$$

Proportional to the distance from the x-axis

$$
p(x, y)=k y .
$$

Proportional to the distance from the origin:

$$
p(x, y)=k \sqrt{x^{2}+y^{2}} .
$$

Proportional to the square of the distance from the origin: $\quad p(x, y)=k\left(x^{2}+y^{2}\right)$.

Inversely proportional to the distance from the origin:

$$
p(x, y)=\frac{k}{\sqrt{x^{2}+y^{2}}} .
$$

Example:
A thin plate is in the shape of the region bounded between the circles of radius 1 and 2 in the first quadrant. The density is proportional to the distance from the origin. Find the center of mass.

